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In this paper, we study the fluorescence fluctuation correlation function in structured fluids where the diffusion
coefficients of probe molecules have different values depending on the distance from initial position, and we
derive two simple expressions. Both of them reproduce the exact numerical results rather accurately. One of
the expressions contains a time-dependent diffusion coefficient and has a clear physical meaning. We show
a procedure to analyze experimental data using the time-dependent diffusion coefficient which results from
crossover from free diffusion inside a mesh to hindered diffusion through mesh structures.

I. Introduction

Recently, diffusion coefficients of probe molecules in hy-
aluronan aqueous solution have been investigated over a wide
range of time scales by changing the spectroscopic observation
time.1 The observed diffusion coefficients have a distance
dependence resulting from characteristic nano-microstructures
of hyaluronan solution.1 Fast diffusion is observed by photo-
chemical quenching measurements over short distances of∼10
nm, and the value of the diffusion coefficient is almost the same
as that in the absence of hyaluronan. Slow diffusion is observed
by pulsed-field gradient NMR over long distances,∼1-40µm.
The slow diffusion coefficients decrease with increasing con-
centration of hyaluronan according to the well-known expo-
nential scaling law.1-6 The diffusion coefficients change between
these two extremely different length scales. To probe the
transport over distances of hundreds of nanometers, Masuda
and Ushida are now probing the system by fluorescence
correlation spectroscopy.7,8 Fluorescence correlation spectros-
copy observes concentration fluctuations of probe molecules
due to translational diffusion or chemical reactions through
fluorescent signals.9-11 Fluorescence correlation spectroscopy
has become widely used after significant improvement of the
signal-to-noise ratios.12-15 The theoretical foundation of fluo-
rescence correlation spectroscopy has been established for
homogeneous systems.10,16 However, hyaluronan solution is
highly inhomogeneous due to the mesh structure. Strictly
speaking, the fluorescence fluctuation correlation function
derived for homogeneous systems is not applicable to inhomo-
geneous systems over the time range which includes the
crossover from free diffusion of probe molecules inside the mesh
to hindered diffusion through the mesh structure. A multicom-
ponent diffusion model has been proposed for multiphasic

fluids17,18 but not for mesh structures, where the diffusion
coefficients change depending on the length scale of transport.
In multicomponent fluids, probe molecules do not necessarily
diffuse rapidly at short distances, because they may initially be
in the phase where molecules diffuse slowly.

In this paper, we study the fluorescence fluctuation correlation
function in structured fluids where the diffusion coefficients of
probe molecules have different values depending on the distance
from initial position,19,20and we derive simple expressions. The
diffusion coefficient over distances larger than a characteristic
lengthR is different from that over distances shorter thanR.19,20

When the difference between them is small, the fluorescence
fluctuation correlation function derived for homogeneous sys-
tems can be used to fit the data within experimental accuracy,
and effective diffusion coefficients are obtained from fitting.
However, when two diffusion coefficients are very different,
the fluorescence fluctuation correlation function derived for
homogeneous systems is not applicable. In this paper, we
calculate effective diffusion coefficients for structured fluids
both numerically and analytically. Effective diffusion coef-
ficients are expressed in terms of fast and slow diffusion
coefficients and crossover length,R. Therefore, the crossover
length can be obtained by fluorescence correlation spectroscopy
if two limiting values of diffusion coefficients are already known
from other experiments.1 Our analytical expression, although it
is approximate, gives almost identical results to those of exact
numerical calculations even when two limiting diffusion coef-
ficients are very different. The numerical results are also well-
fitted by assuming fractional Brownian motion of probe
molecules. This means that our theory provides an underlying
physical picture for the kinetics described phenomenologically
by fractional Brownian motion. Although our work is motivated
by experiments on hyaluronan solution, our results are applicable
to other systems exhibiting restricted long-range lateral diffusion.
For example, generalization of our approach to two-dimensional
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diffusion can be considered as a model of restricted diffusion
of probe molecules in membranes.

In section II, we summarize the theoretical basis of fluores-
cence correlation spectroscopy. Our description of diffusion in
inhomogeneous media is introduced in section III. In section
IV, results are presented, and in section V, they are used to
analyze experimental data. Section VI is devoted to the
conclusion.

II. Normalized Autocorrelation Function

In fluorescence correlation spectroscopy, fluctuations of the
fluorescence signal stem from changes in the number of
fluorescence particles in a confocal laser spot with an intensity
profile approximated by a three-dimensional Gaussian function9-15

wherez0/w is typically in the range∼5-10. Kinetics of the
fluorescence fluctuations is analyzed by the normalized auto-
correlation function9-15

whereg(rb1 - rb0, τ) is the probability of finding a probe molecule
at timeτ at positionrb1 - rb0 away from its starting point, which
is assumed to be the same as that of finding a probe molecule
at positionrb1 when it starts fromrb0. By changing variablerb )
rb1 - rb0, G(τ) is rewritten as

where the last equality is obtained by inserting eq 1 into the
right-hand side of the first equality and performing Gaussian
integrations in the numerator and denominator. In this paper,
we focus our attention on the change ofg(rb, τ) due to lateral
diffusion and neglect the changes due to other effects such as
reactions and convective transports.15 When the system is
described by uniform media with a diffusion coefficientDeff,
g(rb, τ) is given by10

By substituting eq 4 into eq 3, the normalized autocorrelation
function is obtained as10,16

Strictly speaking, eq 5 is not applicable for inhomogeneous
fluids. In the following, we calculate the normalized autocor-
relation function on the basis of a model of inhomogeneous
fluids introduced previously.19,20

III. Diffusion in Structured Fluids

Polymer gels have network structures which hinder diffusion
over large distances. A theoretical description of the diffusion

of probe molecules in polymer gels has been introduced
previously to analyze the kinetics observed by fluorescence
quenching techniques and NMR.19,20 In this model, probe
molecules diffuse with a diffusion coefficientD0 inside the
sphere of radiusR from its initial position and with a diffusion
coefficient De outside the sphere, as schematically shown in
Figure 1. If we denote the probability of finding a probe at time
τ at rb from its initial position byg0(rb, τ) for r e R andge(rb, τ)
for r g R, they are Green’s functions of the following diffusion
equations

with the initial conditionge(rb, τ) ) 0 and

The appropriate boundary conditions are limrf∞ ge(rb, τ) ) 0
and the continuity and flux balance at the boundary19,20

We introduceg∞(rb, τ), Green’s function forR f ∞

which becomes

after Laplace transformationĝ∞(rb, s) ) ∫0
∞ dτ exp(-sτ) g∞(rb,

τ). Because the solution should be finite atr f 0 andr f ∞,
Green’s functions in the Laplace domain are given by19-21

I( rb) ) I0 exp(-
2(x2 + y2)
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Figure 1. Schematic representation of the model.
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where two unknown coefficientsC0(s) and Ce(s) are to be
determined by boundary conditions eqs 8-9. They are obtained
as19,20

where

The Laplace transform ofG(τ) is obtained as the sum of three
terms by substituting eqs 12-13 into eq 3

where

and 1F1(a, b, x) is the Kummer confluent hypergeometric
function.22 The analytical expression forG∞(τ) is obtained by
substituting eq 10 into eq 3 as

where erf(x) is the error function defined by erf(x) )
(2/xπ)∫0

x exp(-t2) dt.22 The other two terms,G0(τ) andGe(τ),
are calculated through numerical Laplace inversion by the
Stehfest algorithm.23 The accuracy of the numerical inversion
is confirmed by comparison with the numerical integration based
on the expressions obtained by analytical continuation,G0(τ)

) (1/πi) ∫-∞
∞ z dz exp(-z2τ)G0(s)|xs)-iz and Ge(τ) ) (1/πi)

∫-∞
∞ z dz exp(-z2τ)Ge(s)|xs)-iz.
In this model, the diffusion coefficient is small outside the

sphere of radiusR from the initial position. LengthR is
introduced to account for hindered diffusion due to the mesh
structures of the polymer gels. Although the actual mesh
structures of polymer gels may take various forms, it is possible
to define the average mesh size. The lengthRshould be related
to the average mesh size but is not necessarily the same as it.
We will discuss a way to determineR from experimental data
later in this paper.

IV. Results

First, we present the results for different values of crossover
lengthR/w and fixed values of parametersDe/D0 ) 0.5,z0/R )
6.25. In Figure 2,R/w is set equal to 1. The exact numerical
results are shown by dots. In the same figure, the normalized
autocorrelation functions for homogeneous systems, eq 5, with
Deff ) D0 andDeff ) De are also presented. The initial decay
follows eq 5 with Deff ) D0, and the asymptotic decay is
described by eq 5 withDeff ) De. The feature remains the same
for other values ofR/w as shown in Figures 3 and 4 forR/w )
0.5 and R/w ) 2.0, respectively. As the value ofR/w is
increased, the diffusion of the probe molecules in the laser spot
is dominated by the diffusion inside the sphere of radiusR, so
the time range where the decay is described by eq 5 withDeff
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E/xs - F+

E/xs - F-

- 1

(14)
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Figure 2. Normalized autocorrelation function as a function of time
τ for R/w ) 1.0,De/D0 ) 0.5, andz0/R ) 6.25. Time is normalized by
w2/D0. Dots are the exact numerical results. Thick solid line represents
the approximate analytical solution, eq 19. Thin solid line is the best
fit by eq 5, whereDeff/D0 ) 0.75. Long dashed line and short dashed
line represent eq 5 withDeff ) D0 andDeff ) De, respectively.

Figure 3. The same as Figure 2 but forR/w ) 0.5. Thin solid line is
the best fit by eq 5, whereDeff/D0 ) 0.58.
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) D0 increases. On the other hand, asR/w is decreased, the
diffusion in the laser spot is dominated by the diffusion outside
the sphere of radiusR, and the decay is mainly described by eq
5 with Deff ) De.

To construct an approximate analytical solution, we compare
three terms,G∞(τ), G0(τ), andGe(τ), in G(τ). The initial decay
is mainly governed byG∞(τ), and the asymptotic decay is given
by Ge(τ), and the contribution fromG0(τ) is negligibly small.
Moreover, among the two terms in eq 18, the first term is
dominant especially at initial times. Therefore, we obtain an
approximate expression

where erfc(x) ) 1 - erf(x). Equation 19 is also plotted in Figures
2-4. We can see that eq 19 is an excellent approximation for
the exact numerical results. We have confirmed that eq 19
reproduces the exact numerical results very well even whenDe/
D0 is as small asDe/D0 ≈ 0.2.

We can derive another approximate expression forG(τ). First,
we assume that the autocorrelation function for inhomogeneous
systems is still given by eq 5 but with a time-dependentDeff,
Deff(τ). Namely,

Diffusion coefficients should be independent of the parameter
z0, which characterizes the intensity profile of a laser spot. We
compare eq 20 with eq 19 in the limitz0 f ∞. In the long time
limit τ f ∞, the time-dependent diffusion coefficient is obtained
as

Equation 20 together with eq 21 gives another approximate
expression forG(τ). The approximate expression is compared
with the exact numerical results in Figures 5-7. Equation 20
together with eq 21 reproduces the exact numerical results as

accurately as eq 19. The effective time-dependent diffusion
coefficient, eq 21, has a clear physical meaning: it is the
weighted statistical average of the diffusion coefficientsD0 and
De, with the weights given by a portion of the probes within
the sphere of radiusR, ∫0

reR drb g∞(rb, τ) ≈ erf(R/x4D0τ) for
τ f ∞, and that outside the sphere, erfc(R/x4D0τ) ) 1 -
erf(R/x4D0τ) . Equation 20 with eq 21 gives almost identical
results to those of the exact numerical calculation, even when
De is much smaller thanD0, for example,De/D0 ) 0.2, as shown
in Figure 8. WhenDe is not much different fromD0, for
example,De/D0 ) 0.5, the expression of the autocorrelation
function for homogeneous systems can be used to fit the data
within experimental accuracy. The effective diffusion coef-
ficients obtained from fitting are summarized in Figure 9 for

Figure 4. The same as Figure 2 but forR/w ) 2.0. Thin solid line is
the best fit by eq 5, whereDeff/D0 ) 0.95 and overlaps with long dashed
line, Deff/D0 ) 1.0.
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Figure 5. Dots are the same as those in Figure 2. Solid line represents
eq 20 with the time-dependent effective diffusion coefficient in eq 21.

Figure 6. Dots are the same as those in Figure 3. Solid line represents
eq 20 with the time-dependent effective diffusion coefficient in eq 21.

Figure 7. Dots are the same as those in Figure 4. Solid line represents
eq 20 with the time-dependent effective diffusion coefficient in eq 21.
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R/w ≈ 0.1-3.0. We search for an analytical expression ofDeff

as a function ofR/w on the basis of eq 20 together with eq 21.
We notice that, if we replaceDeff(τ) in eq 20 byDeff(τ*), the
value ofDeff(τ) at a certain value (τ*) of τ, eq 20 is reduced to
eq 5 withDeff ) Deff(τ*). If we determine the value ofτ* such
that Deff ) Deff(τ*) gives the best fit to the curve ofDeff in
Figure 9, thenDeff ) Deff(τ*) gives an approximate analytical
expression ofDeff as a function ofR/w.

WhenDe is much smaller thanD0, the exact numerical result
is also fitted very well by assuming fractional Brownian motion
of the probe molecules described byDeff(τ) ) KRτR-1 with R
) 0.68 andKR ) 0.38, as shown in Figure 8. If the mean-
square displacement of diffusing molecules depends on time
as KRτR for various reasons, then the motion of the particles
can be described by fractional Brownian motion. Here,KR and
R are just fitting parameters. These parameters are further related
to other physical quantities in some cases. For example, when
particles diffuse on fractal structures,R is related to the fractal
dimension.24 Although fractional Brownian motion is frequently
observed for hindered diffusion,R is merely a fitting parameter,
and its theoretical relation with hindrance has not yet been
established.15,17,25,26 Comparison of the fractional Brownian

model with our model shows that the fitting parameters indicate
the cross-over length,R, between short-range free diffusion with
its coefficientD0 and long-range hindered diffusion with its
coefficient De, as well as the ratio between two diffusion
coefficients,De/D0. In other words, our theory provides an
underlying physical picture for the kinetics phenomenologically
described by fractional Brownian motion.

V. Analysis of Experimental Data

We have developed approximate solutions to the model
describing hindered diffusion and compared them with numer-
ical results. In this section, we analyze recently observed
diffusion coefficients of a fluorescence probe (Alexa Fluor 488)
in 0.1 wt % aqueous hyaluronan solution of molecular weight
300 000. Details of the material preparation and the experimental
setup have already been described.8 The observed fluorescence
correlation function has been fitted by eq 5 to obtain translational
diffusion coefficients, although eq 5 is originally derived by
assuming the diffusion of probe molecules in homogeneous
solutions. From our model calculations, such an analysis is
indeed possible when diffusion coefficients outside the sphere
of radiusR from its initial position are not so different from
those inside the sphere. The observed diffusion coefficients are,
however, effective for quantitatively characterizing the diffu-
sional escape of probe molecules from the lateral dimensions
of laser spotw. In inhomogeneous systems, the observed
effective diffusion coefficients depend on the lateral dimension
of laser spotw; the effective diffusion coefficients decrease with
increasingw, because the mesh structure of hyaluronan interferes
with the lateral diffusion of probe molecules. It is possible to
analyze the effective diffusion coefficients thus obtained by our
model usingDeff(τ*), whereDeff(τ) is given by eq 21 andτ* )
0.54w2/D0. Strictly speaking,τ* ) 0.54w2/D0 is obtained for
De/D0 ) 1/2. We have noticed thatτ* is almost independent of
De/D0 when De/D0 g 1/2. The observed diffusion coefficients
of Alexa 488 in 0.1 wt % hyaluronan solution is presented
against lateral dimension of laser spotw in Figure 10.

If the value of De measured by another experiment is
available, the observed effective diffusion coefficient as a
function ofw is compared toDeff(τ*) obtained from eq 21 with
τ* ) 0.54w2/D0, where R is an adjustable parameter. The
diffusion coefficient at large distances, which corresponds to
De in our model, is measured by pulsed-field gradient NMR
when the probe molecules are cytochrome c. However,De is
not measured for Alexa 488. Therefore, the observed effective
diffusion coefficient is fitted byDeff(τ*) with De and R as
adjustable parameters. The result withDe/D0 ) 0.84 andR )

Figure 8. Normalized autocorrelation function as a function of time
τ for De/D0 ) 0.2,R/w ) 1.0, andz0/R ) 6.25. Time is normalized by
w2/D0. Dots are the exact numerical results. Solid line represents eq 20
with the time-dependent effective diffusion coefficient in eq 21. Dashed
line is the best fit by assuming sub-diffusive transport,R ) 0.68 and
KR ) 0.38.

Figure 9. Plot of the effective diffusion coefficient againstR/w. Solid
line is the approximate expression,Deff

/ ) Deff(τ*) given by eq 21 with
τ* ) 0.54w2/D0.

Figure 10. Effective diffusion coefficients of Alexa 488 with 0.1 wt
% hyaluronan solution against lateral dimension of laser spot,w. Solid
line is the fit by the theoretical expression,Deff

/ ) Deff(τ*) given by eq
21 with τ* ) 0.54w2/D0.
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272 nm is shown in Figure 10. The values are rough estimates,
though, because the number of experimental data points is not
sufficient to observe any change in effective diffusion coef-
ficients, which would take place aroundw ≈ 200 nm. Although
the result is preliminary, it suggests that the cross-over length
between initial free diffusion and asymptotic hindered diffusion
is larger than the average mesh size of the gels. The average
mesh size of 33 nm is estimated for 0.1 wt % of hyaluronan
(0.65 cm3/g) by assuming a cubic structure and the radius of
chain molecules, 3 Å. The difference in length indicates that
probe molecules pass through several regions surrounded by
chain molecules until the diffusion is suppressed by obstruction.
A similar difference between average mesh size and crossover
length of diffusion coefficients is also observed for cytochrome
c in 1.5 wt % of hyaluronan, where the average mesh size is
estimated to be 5-8 nm, while the crossover length seems to
be in the region 10-100 nm, although it is not accessible by
experiments at present.8

Our theoretical method is useful to extract the cross-over
length of the diffusion coefficients from the experimental data.
While the average mesh size is a material constant of hyalu-
ronan, the cross-over length of the diffusion coefficients depends
both on the concentration of hyaluronan and the size of the probe
molecules. The difference in length would be smaller for
cytochrome c than for Alexa, because cytochrome c is easily
obstructed by hyaluronan molecules by its large size. Further
experimental studies by systematically changing the concentra-
tion of hyaluronan are needed to find the relation between these
length scales.

Masuda and Ushida are now improving the experimental
apparatus to makew smaller. They are also planning to perform
similar experiments on cytochrome c molecules whose diffusion
coefficients are smaller than those of Alexa molecules, and the
change in effective diffusion coefficients would be observed at
even smallerw. BecauseDe of cytochrome c is known from
NMR experiments, only the single parameterR is required to
fit the observed effective diffusion coefficients againstw by
Deff(τ*). Although our analysis given in this section is far from
being complete, our aim is to show a way to analyze experi-
mental data by our theoretical expressions.

VI. Conclusion

The diffusion of probe molecules in structured fluids was
investigated by a simple theoretical model introduced previously,
where the diffusion coefficient,De, of the probe molecules
outside the sphere of radiusR from its initial position is different
from that inside the sphere,D0. Two approximate expressions
are obtained for the normalized fluorescence fluctuation cor-
relation function. Both of them reproduce the exact numerical
results accurately for experimentally accessible values ofD0

andDe. One of the expressions, eq 19, is specific to the quantity
observable by fluorescence correlation spectroscopy. The other
expression, eq 20, is presented in terms of a time-dependent
diffusion coefficient, eq 21. The introduction of a time-
dependent diffusion coefficient seems to be useful for analyzing
other phenomena involving diffusion. Moreover, as we have
shown in the preceding section, the time-dependent diffusion
coefficient has a clear physical meaning as the statistical average
of slow and fast diffusion coefficients.

The normalized autocorrelation function, eq 5, has been
widely used in fluorescence correlation spectroscopy for ho-
mogeneous solutions. There are various sources of heterogeneity
in biological samples. Only a few analytical expressions of the
normalized autocorrelation function have been applied in

fluorescence correlation spectroscopy for inhomogeneous sys-
tems. One is a multicomponent diffusion model derived for
multiphasic fluids. In this model, probe molecules diffuse slowly
even at short times when they are in the phase of high viscosity.
Obviously hindered diffusion is beyond the scope of applicabil-
ity of the model, because such slow initial diffusion is very
different from the case where molecules diffuse freely inside a
mesh until they are obstructed by the mesh structures. Our model
takes into account such a cross-over of diffusion coefficients
depending on the length scale of transport and is simple enough
to derive approximate analytical expressions for the autocor-
relation function. For hindered diffusion, experimental data of
fluorescence correlation spectroscopy are sometimes analyzed
by assuming fractional Brownian motion.15,17,25,26However, one
should note that fractional Brownian motion is a phenomeno-
logical model, in contrast to our model. Numerical values of
the autocorrelation function obtained from our model are also
described by fractional Brownian motion when the diffusion
coefficient,De, is very small compared to that of free diffusion,
D0, as shown in Figure 8. Comparison of the fractional Brownian
model with our model shows that the parameters in fractional
Brownian motion indicate the cross-over length of hindered
diffusion as well as the ratio between the two diffusion
coefficients,De/D0.

We propose to analyze the experimental data on the basis of
eq 21 by the following procedure: First, the fluorescence
correlation function should be measured for various values of
the characteristic lateral dimension of the laser spot,w, with
the concentration of hyaluronan fixed. For each value ofw, we
can obtainR by fitting the experimental data to eq 20 together
with eq 21 if two limiting values of the diffusion coefficients
are already known from other experiments.1 Our theoretical
method is justified ifR does not deviate greatly by changing
w. There may be a case where the experimental data are
analyzed by eq 5, although it is applicable only to a homoge-
neous solution in the strict sense. In this case,Deff obtained
from fitting to the experimental data can be used to estimateR
from the theoretical curve given byDeff(τ*), becauseDeff/D0 is
a function ofR/w if De/D0 is known. Even ifDe/D0 is unknown,
the experimental data ofDeff/D0 againstw can be used to
estimateR andDe/D0 by fitting to Deff(τ*). The experimental
data we have analyzed in the previous section correspond to
this case, and we have estimatedR andDe/D0. In either case,
we obtainR, which corresponds the mesh structures at one
concentration of hyaluronan solution. By repeating the same
procedure for various concentration of hyaluronan solution, we
can study howR changes by changing the concentration.R
should also depend on the molecular size of the solute.
Meanwhile, the mean mesh size of the gel can be estimated
from the cross-section of the chain molecule and the concentra-
tion of hyaluronan if a cubic structure is assumed or from the
measurement by an electron spin resonance.27 It would be very
interesting to know how these two lengths are related. The
diffusion of a particle in hyaluronan solution has been also
investigated by simulations.28 It is revealed that a change in
the diffusion coefficients is extremely difficult to observe within
the system size of gels accessible by simulations.28 The physical
mechanism behind hindered diffusion has not yet been clearly
understood. Recently, Alexandrakis et al. studied the effect of
hyaluronidase treatment on diffusion by a multicomponent fluids
model.18 Our theory is based on an alternative picture of
structured fluids and focused on hindered diffusion. The time
dependence of the diffusion coefficient, eq 21, can be used to
test the validity of this picture.
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