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In this paper, we study the fluorescence fluctuation correlation function in structured fluids where the diffusion
coefficients of probe molecules have different values depending on the distance from initial position, and we
derive two simple expressions. Both of them reproduce the exact numerical results rather accurately. One of
the expressions contains a time-dependent diffusion coefficient and has a clear physical meaning. We show
a procedure to analyze experimental data using the time-dependent diffusion coefficient which results from
crossover from free diffusion inside a mesh to hindered diffusion through mesh structures.

I. Introduction fluids!?:18 but not for mesh structures, where the diffusion
Recently, diffusion coefficients of probe molecules in hy- coefficignts change depending on the length scale of transpprt.
- . - .. In multicomponent fluids, probe molecules do not necessarily

aluronan aqueous solution have been investigated over aW|deO|.ff idlv at short dist b th nitially b
range of time scales by changing the spectroscopic observation iMuse rapidly at short distances, because they may initially be
time! The observed diffusion coefficients have a distance " the !ohase where molecules diffuse slowly. ] )
dependence resulting from characteristic nano-microstructures I this paper, we study the fluorescence fluctuation correlation
of hyaluronan solutiod.Fast diffusion is observed by photo-  function in structured fluids where the diffusion coefficients of
chemical quenching measurements over short distances®f  Probe molecules have different values depending on the distance
nm, and the value of the diffusion coefficient is almost the same from initial position!®2°and we derive simple expressions. The
as that in the absence of hyaluronan. Slow diffusion is observeddiffusion coefficient over distances larger than a characteristic
by pulsed-field gradient NMR over long distances,—40um. lengthR s different from that over distances shorter tia?-20
The slow diffusion coefficients decrease with increasing con- When the difference between them is small, the fluorescence
centration of hyaluronan according to the well-known expo- fluctuation correlation function derived for homogeneous sys-
nential scaling lav¥ ¢ The diffusion coefficients change between tems can be used to fit the data within experimental accuracy,
these two extremely different length scales. To probe the and effective diffusion coefficients are obtained from fitting.
transport over distances of hundreds of nanometers, MasudaHowever, when two diffusion coefficients are very different,
and Ushida are now probing the system by fluorescence the fluorescence fluctuation correlation function derived for
correlation spectroscopy? Fluorescence correlation spectros- homogeneous systems is not applicable. In this paper, we
copy observes concentration fluctuations of probe molecules calculate effective diffusion coefficients for structured fluids
due to translational diffusion or chemical reactions through both numerically and analytically. Effective diffusion coef-
fluorescent signal®:** Fluorescence correlation spectroscopy ficients are expressed in terms of fast and slow diffusion
has become widely used after significant improvement of the coefficients and crossover lengtR, Therefore, the crossover
signal-to-noise ratio¥** The theoretical foundation of fluo-  |ength can be obtained by fluorescence correlation spectroscopy
rescence correlation spectroscopy has been established foft two limiting values of diffusion coefficients are already known
homogeneous systertst® However, hyaluronan solution IS from other experimentsOur analytical expression, although it
highly inhomogeneous due to the mesh structure. Strictly js anproximate, gives almost identical results to those of exact
speaking, the fluorescence fluctuation correlation function n,merical calculations even when two limiting diffusion coef-
derived for homogeneous systems is not applicable to inhomo-j¢iants are very different. The numerical results are also well-
geneous systems o_ver_the time range Wh'c_h _mcludes thesieq by assuming fractional Brownian motion of probe
crossover fro‘T‘ fre_e diffusion of probe molecules inside the_ mesh molecules. This means that our theory provides an underlying
to hlndergd d|ffu5|0n through the mesh structure. A mulltlcom.- physical picture for the kinetics described phenomenologically
ponent diffusion model has been proposed for multiphasic by fractional Brownian motion. Although our work is motivated

T National Institute of Advanced Industrial Science and Technology by experiments on hya.ll.Jronan s_olutlon, our results are appllc_able
(AIST). to other systems exhibiting restricted long-range lateral diffusion.
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diffusion can be considered as a model of restricted diffusion D
of probe molecules in membranes.
In section Il, we summarize the theoretical basis of fluores-
cence correlation spectroscopy. Our description of diffusion in
inhomogeneous media is introduced in section Ill. In section
IV, results are presented, and in section V, they are used to
analyze experimental data. Section VI is devoted to the
conclusion.

Il. Normalized Autocorrelation Function

In fluorescence correlation spectroscopy, fluctuations of the
fluorescence signal stem from changes in the number of
fluorescence particles in a confocal laser spot with an intensity
profile approximated by a three-dimensional Gaussian furicfion

I(F) =1, ex;{_w — 2_222) (@) Figure 1. Schematic representation of the model.
%

where zy/w is typically in the range~5—10. Kinetics of the ~ Of probe molecules in polymer gels has been introduced
fluorescence fluctuations is analyzed by the normalized auto- Previously to analyze the kinetics observed by fluorescence

correlation functiofi15 guenching techniques and NMR2C |n this model, probe
molecules diffuse with a diffusion coefficied, inside the
f dTlf drgl(T) I(Te) (T, — T, 7) sphere of radiuR from its initial position and with a diffusion

G(r) = 2 coefficient De outside the sphere, as schematically shown in

f dar I(‘r’)2 Figure 1. If we denote the probability of finding a probe at time

. . o T atT from its initial position bygo(r, 7) for r < Randge(r, 7)
whereg(F; —To, 7) is the probability of finding a probe molecule o r > R they are Green’s functions of the following diffusion
attimer at positionr; — To away from its starting point, which  gquations

is assumed to be the same as that of finding a probe molecule
at positionr; when it starts fronTo. By changing variabl&€ =

O e N D2 a(T
T1 — To, G(1) is rewritten as a7 9o(T, 7) = DoV* gy(T, 7)

(6)
0 - .
L SROIOEGR o %7 0 = DV (M)
T) =
[ dri(T)? with the initial conditionge(f, 7) = 0 and
— [ar eXp(—%ﬁ _ f) ot (3 6(T, 7) = (T) )

The appropriate boundary conditions arelim ge(f, 7) = 0
where the last equality is obtained by inserting eq 1 into the and the continuity and flux balance at the bound&#
right-hand side of the first equality and performing Gaussian

integrations in the numerator and denominator. In this paper, 9o(T, Dli=p = 9T, )l (8)
we focus our attention on the changeggf, 7) due to lateral 5 5
d|ffus_|on and neglect th_e changes due to other effects su_ch as Dy — go(T, 7)l,—g = Dy — 9u(F, 7)|,_n ©)
reactions and convective transpdftsWhen the system is ar ar

described by uniform media with a diffusion coefficieDgs,
g(f, 7) is given by?

2 i N 1 r?
0= oy eXp( 456@) @ SO0 o exp( 4Dof) o

By substituting eq 4 into eq 3, the normalized autocorrelation Which becomes
function is obtained 4816

We introduceg(r, 7), Green’s function foR — o

poop 81 .
b1 1 " §°(7, 9 = Z7py XPCTVIDY (11)
1+ 4D W,/ 2
er™ 1+ 4Dgyt/z after Laplace transformatio@f°(r, s) = f5° dr exp(—sr) g=(T,

7). Because the solution should be finiterat> 0 andr — oo,

Strictly speaking, eq 5 is not applicable for inhomogeneous ) 8 ) ;
y SP g &q pp d Green’s functions in the Laplace domain are giveA®?t

fluids. In the following, we calculate the normalized autocor-
relation function on the basis of a model of inhomogeneous

A , Cyls
fluids introduced previousl220 8(T,9 =0"(T,9 + 2.7'[0|(3 )r sinh( /Dy, (r = R) (12)
0

I1l. Diffusion in Structured Fluids

Polymer gels have network structures which hinder diffusion 8T, 9 = G exp(r /S/De), r=R) (13)
over large distances. A theoretical description of the diffusion AmDyr
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where two unknown coefficient€y(s) and C(s) are to be
determined by boundary conditions egs® They are obtained
a§9,20

1

Culs) = e (14)
R,/9D -1

exp( o A

2 V(1/,/D, + 1//D
cly =202 g_—(; I s

where

Oy, D) _ /D,

E—T(l—ﬁo),Fi— 5011 (16)

The Laplace transform db(z) is obtained as the sum of three
terms by substituting eqs 243 into eq 3

G(9) = G"(9) + Gy(9) + Gel9) (17)
where
ée(S) = CB(OS) f: drr x
r? 131 1
ex;{—r s/De—V—Vz) F [ > > (\/\/2 ZO)rZ]
A o( S)
Gy(9) = drr sinh(=r,/s/D,) x
Al
G (s) = 1 fOR drr x

o o

and 1F1(a, b, x) is the Kummer confluent hypergeometric
function?2 The analytical expression f&@®(r) is obtained by
substituting eq 10 into eq 3 as

+ -

erf(R 202

4Dt 4Dyt
1+ 1+—;
w? Z

1 1

Rexp — +=|R

eXF{ (4D0'L' \/\12) ]F 13 i_iRz (18)
g

S

where erfk) is the error function defined by ex) =
(2IW7) f& exp(1?) dt.22 The other two termsGo(r) and G(z),

are calculated through numerical Laplace inversion by the
Stehfest algorithm? The accuracy of the numerical inversion
is confirmed by comparison with the numerical integration based
on the expressions obtained by analytical continuat@®yfr)

1
4Dyt

1

G(r) =
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Figure 2. Normalized autocorrelation function as a function of time
7 for Rw = 1.0,DJDo = 0.5, andzy/R = 6.25. Time is normalized by
w?/Do. Dots are the exact numerical results. Thick solid line represents
the approximate analytical solution, eq 19. Thin solid line is the best
fit by eq 5, whereDe#/Do = 0.75. Long dashed line and short dashed
line represent eq 5 witBer = Do and Dest = D, respectively.
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Figure 3. The same as Figure 2 but f&w = 0.5. Thin solid line is
the best fit by eq 5, wherBes/Do = 0.58.

= (Uni) /%% z dz exp(—227)Go(9)| /o=, @and Ge(7) =
% 2 dz exp(—2271)Ge(9) /o= _iy-

In this model, the diffusion coefficient is small outside the
sphere of radiusR from the initial position. LengthR is
introduced to account for hindered diffusion due to the mesh
structures of the polymer gels. Although the actual mesh
structures of polymer gels may take various forms, it is possible
to define the average mesh size. The lerig#hould be related
to the average mesh size but is not necessarily the same as it.
We will discuss a way to determirie from experimental data
later in this paper.

(1/i)

IV. Results

First, we present the results for different values of crossover
lengthR/w and fixed values of parametells/Do = 0.5,2/R =
6.25. In Figure 2R/w is set equal to 1. The exact numerical
results are shown by dots. In the same figure, the normalized
autocorrelation functions for homogeneous systems, eq 5, with
Deit = Do andDess = De are also presented. The initial decay
follows eq 5 with Def = Do, and the asymptotic decay is
described by eq 5 witBet = De. The feature remains the same
for other values oR/w as shown in Figures 3 and 4 fBfw =
0.5 andRw = 2.0, respectively. As the value d®w is
increased, the diffusion of the probe molecules in the laser spot
is dominated by the diffusion inside the sphere of radRuso
the time range where the decay is described by eq 5 With
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Figure 4. The same as Figure 2 but f&w = 2.0. Thin solid line is Figure 5. Dots are the same as those in Figure 2. Solid line represents

It'he bI?)St/fliDt by elqg, wheBe1/Do = 0.95 and overlaps with long dashed  eq 20 with the time-dependent effective diffusion coefficient in eq 21.
Ine, Desi/ Do = 1.0.

1.0 LA LU L ALY B
= Dy increases. On the other hand, R¥sv is decreased, the
diffusion in the laser spot is dominated by the diffusion outside o8l
the sphere of radiuR, and the decay is mainly described by eq '
5 with Degt = De.
To construct an approximate analytical solution, we compare ’l: 0.6
three termsG*(7), Go(r), andGg(7), in G(z). The initial decay ~—
is mainly governed b¥*(r), and the asymptotic decay is given O o4f
by G¢(7), and the contribution fron®o(7) is negligibly small.
Moreover, among the two terms in eq 18, the first term is ozl
dominant especially at initial times. Therefore, we obtain an
approximate expression L ey
0.001 0.01 0.1 1 10
erfR. [~ +1 erfdR [——+1 T
4Dyt 2(2) 4Dyt 2(2) Figure 6. Dots are the same as those in Figure 3. Solid line represents
G(r) = eq 20 with the time-dependent effective diffusion coefficient in eq 21.
(1 N 4Dor) 4Dyt ( 4Der) 4D
V\I2 2(2) V\12 2(2) 1.0 [ T I H
19) 0.8
where erfc§) = 1 — erf(x). Equation 19 is also plotted in Figures
2—4. We can see that eq 19 is an excellent approximation for ~ 0.6
the exact numerical results. We have confirmed that eq 19 \t_",
reproduces the exact numerical results very well even vién QO o4l
Do is as small aP/Dg ~ 0.2.
We can derive another approximate expressio®s{a). First,
we assume that the autocorrelation function for inhomogeneous 0.2~
systems is still given by eq 5 but with a time-dependegt,

Deﬁ(‘[) Namely, Lovovvenl v vl vl i

0.001 0.01 0.1 1 10
T
G() = - - (20) Figure 7. Dots are th those in Figure 4. Solid li t
1+ 4D (1) WP 1+4D 172 igure 7. Dots are the same as those in Figure 4. Solid line represents
eff ef(?) T2 eq 20 with the time-dependent effective diffusion coefficient in eq 21.

Diffusion coefficients should be independent of the parameter accurately as eq 19. The effective time-dependent diffusion
Zo, Which charactgrizes the.intens.ity.profile of a laser spot. We coefficient, eq 21, has a clear physical meaning: it is the
compare eq 20 with eq 19 in the ling§ — . In the long time weighted statistical average of the diffusion coefficiebgsand
limit 7 — oo, the time-dependent diffusion coefficient is obtained D, with the weights given by a portion of the probes within

as the sphere of radiuR, /§=R dr g=(, 7) ~ erf(R/,/4Dr) for
D) 1 1) 7 — oo, and that outside the sphere, eRG(4Dyr) = 1 —
efil?) = erf(R/,/4D,7) . Equation 20 with eq 21 gives almost identical
erf(R/y/4Dq7) " erfc(R/y/4Dg) results to those of the exact numerical calculation, even when
Dy D De is much smaller thaDo, for exampleDg/Do = 0.2, as shown
in Figure 8. WhenDe is not much different fromDo, for
Equation 20 together with eq 21 gives another approximate example,DJ/Dy = 0.5, the expression of the autocorrelation
expression foiG(r). The approximate expression is compared function for homogeneous systems can be used to fit the data

with the exact numerical results in Figures B Equation 20 within experimental accuracy. The effective diffusion coef-
together with eq 21 reproduces the exact numerical results asficients obtained from fitting are summarized in Figure 9 for

e
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Figure 10. Effective diffusion coefficients of Alexa 488 with 0.1 wt
% hyaluronan solution against lateral dimension of laser spd$plid

line is the fit by the theoretical expressidby; = Desi(z*) given by eq
21 with 7* = 0.54wW4/Do.

0.2

0.001  0.01 0.1 1 10 model with our model shows that the fitting parameters indicate
T the cross-over lengti, between short-range free diffusion with
Figure 8. Normalized autocorrelation function as a function of time its coefficientDo and long-range hindered diffusion with its
7 for DJDo = 0.2,Riw = 1.0, andz/R = 6.25. Time is normalized by coefficient D, as well as the ratio between two diffusion
W_ZIDO. Dots are the exact numerical results. Solid line represents eq 20 cpefficients, Do/Dg. In other words, our theory provides an
with the time-dependent effective diffusion coefficient in eq 21. Dashed underlying physical picture for the kinetics phenomenologically

line is th fi i -diffusi . . . . .
l|<r:[e=|sot.geé.best it by assuming sub-diffusive transpart= 0.68 and described by fractional Brownian motion.

1.0 V. Analysis of Experimental Data
We have developed approximate solutions to the model
describing hindered diffusion and compared them with numer-
ical results. In this section, we analyze recently observed
diffusion coefficients of a fluorescence probe (Alexa Fluor 488)
in 0.1 wt % aqueous hyaluronan solution of molecular weight
300 000. Details of the material preparation and the experimental
setup have already been descriBddhe observed fluorescence
correlation function has been fitted by eq 5 to obtain translational
diffusion coefficients, although eq 5 is originally derived by
oSk v v ooy assuming the diffusion of probe molecules in homogeneous
| 05 1.0 1.5 20 25 3.0 solutions. From our model calculations, such an analysis is
R/w indeed possible when diffusion coefficients outside the sphere
of radiusR from its initial position are not so different from
those inside the sphere. The observed diffusion coefficients are,

0.9

0.8

Deff

0.7

0.6

Figure 9. Plot of the effective diffusion coefficient agairRiw. Solid
line is the approximate expressidd; = Deii(z*) given by eq 21 with

™ = 0.54W2/Do. however, effective for quantitatively characterizing the diffu-
sional escape of probe molecules from the lateral dimensions
Riw ~ 0.1-3.0. We search for an analytical expressiorof of laser spotw. In inhomogeneous systems, the observed
as a function oR/w on the basis of eq 20 together with eq 21. €effective diffusion coefficients depend on the lateral dimension
We notice that, if we replacBer(t) in eq 20 byDegx(t*), the of laser spotv; the effective diffusion coefficients decrease with
value of De(7) at a certain valuerf) of 7, eq 20 is reduced to  increasingw, because the mesh structure of hyaluronan interferes
eq 5 withDegt = Deg(z*). If we determine the value aof* such with the lateral diffusion of probe molecules. It is possible to
that Dest = Desi(7*) gives the best fit to the curve dDes in analyze the effective diffusion coefficients thus obtained by our
Figure 9, therDest = De(7*) gives an approximate analytical ~model usingDes(z*), where De(7) is given by eq 21 and* =
expression oDy as a function oR/w. 0.54n?/Dy. Strictly speakinggz* = 0.54n%/Dy is obtained for

WhenDe is much smaller thaB,, the exact numerical result ~ De/Do = /2. We have noticed that* is almost independent of
is also fitted very well by assuming fractional Brownian motion De/Do WhenD¢/Do = ¥/>. The observed diffusion coefficients
of the probe molecules described By(t) = Kq* ! with a of Alexa 488 in 0.1 wt % hyaluronan solution is presented
= 0.68 andK, = 0.38, as shown in Figure 8. If the mean- against lateral dimension of laser spwin Figure 10.
square displacement of diffusing molecules depends on time If the value of D measured by another experiment is
as Kqr@ for various reasons, then the motion of the particles available, the observed effective diffusion coefficient as a
can be described by fractional Brownian motion. H&gand function ofw is compared t®ef(*) obtained from eq 21 with
o are just fitting parameters. These parameters are further related* = 0.54n%/Dy, where R is an adjustable parameter. The
to other physical quantities in some cases. For example, whendiffusion coefficient at large distances, which corresponds to
particles diffuse on fractal structures,is related to the fractal  De in our model, is measured by pulsed-field gradient NMR
dimensior?* Although fractional Brownian motion is frequently ~ when the probe molecules are cytochrome c. HoweDglis
observed for hindered diffusion,is merely a fitting parameter,  not measured for Alexa 488. Therefore, the observed effective
and its theoretical relation with hindrance has not yet been diffusion coefficient is fitted byDes(7*) with De and R as
established>172526 Comparison of the fractional Brownian adjustable parameters. The result wildDo = 0.84 andR =
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272 nm is shown in Figure 10. The values are rough estimates,fluorescence correlation spectroscopy for inhomogeneous sys-
though, because the number of experimental data points is nottems. One is a multicomponent diffusion model derived for
sufficient to observe any change in effective diffusion coef- multiphasic fluids. In this model, probe molecules diffuse slowly
ficients, which would take place aroumd~ 200 nm. Although even at short times when they are in the phase of high viscosity.
the result is preliminary, it suggests that the cross-over length Obviously hindered diffusion is beyond the scope of applicabil-
between initial free diffusion and asymptotic hindered diffusion ity of the model, because such slow initial diffusion is very
is larger than the average mesh size of the gels. The averagalifferent from the case where molecules diffuse freely inside a
mesh size of 33 nm is estimated for 0.1 wt % of hyaluronan mesh until they are obstructed by the mesh structures. Our model
(0.65 cni¥/g) by assuming a cubic structure and the radius of takes into account such a cross-over of diffusion coefficients
chain molecules, 3 A. The difference in length indicates that depending on the length scale of transport and is simple enough
probe molecules pass through several regions surrounded byto derive approximate analytical expressions for the autocor-
chain molecules until the diffusion is suppressed by obstruction. relation function. For hindered diffusion, experimental data of
A similar difference between average mesh size and crossoverfluorescence correlation spectroscopy are sometimes analyzed
length of diffusion coefficients is also observed for cytochrome by assuming fractional Brownian motidhl7:2528However, one

c in 1.5 wt % of hyaluronan, where the average mesh size is should note that fractional Brownian motion is a phenomeno-
estimated to be 58 nm, while the crossover length seems to |ogical model, in contrast to our model. Numerical values of
be in the region 16100 nm, although it is not accessible by  the autocorrelation function obtained from our model are also
experiments at presefit. described by fractional Brownian motion when the diffusion

Our theoretical method is useful to extract the cross-over coefficient,De, is very small compared to that of free diffusion,
length of the diffusion coefficients from the experimental data. D,, as shown in Figure 8. Comparison of the fractional Brownian
While the average mesh size is a material constant of hyalu- model with our model shows that the parameters in fractional
ronan, the cross-over length of the diffusion coefficients depends Brownian motion indicate the cross-over length of hindered
both on the concentration of hyaluronan and the size of the probediffusion as well as the ratio between the two diffusion
molecules. The difference in length would be smaller for coefficients,De/Do.

c;k/)tochrorgebc t;war; for Alexa, lbeclausg c_ytolchrome_ c isFeaiin We propose to analyze the experimental data on the basis of
obstructed by hyaluronan molecules by its large size. Further o, »1 "y the following procedure: First, the fluorescence

gxperimental studies by systemat!cally changing the Concen'[ra'correlation function should be measured for various values of
tion of hyaluronan are needed to find the relation between thesethe characteristic lateral dimension of the laser spotwith

length scales. the concentration of hyaluronan fixed. For each value,ofve

Masuda and Ushida are now improving the experimental ;o ohtairR by fitting the experimental data to eq 20 together
apparatus to make smaller. They are also planning to perform uh eq 21 if two limiting values of the diffusion coefficients

similar_experiments on cytochrome ¢ molecules whose diffusion ., already known from other experimehtQur theoretical
coeff|C|e.nts are ;smal!er than those Qf Alexa molecules, and the method is justified ifR does not deviate greatly by changing
change in effective diffusion coefficients WOU!d be observed at |, There may be a case where the experimental data are
even smalle_rw. BecauseD. of _cytochrome c1s k”OW_“ from analyzed by eq 5, although it is applicable only to a homoge-
][\.IME experlments%fonl_y the_f?lngle paraf;r_lgférs requ!red to neous solution in the strict sense. In this cd3g; obtained

[')t t (g)oglstiglfdh?)uerca“r:/ael (?slisusil\?;n ?ﬁ?hig':géfioigg?;ﬁ%m from fitting to the experimental data can be used to estirRate
b;?ng c.:ompletfeJ our aim .é togshow a way to analyze experi- from the theoretical curve given Her(r*), becauseer/Do s
mental data by ’our theoretical expressions a function 'ofR/w if De/Dg is known. Eyen ifDe/Dg is unknown,

) the experimental data dDer/Do againstw can be used to
estimateR and D¢/Dyg by fitting to Des(*). The experimental
data we have analyzed in the previous section correspond to

The diffusion of probe molecules in structured fluids was this case, and we have estimaandD¢/Do. In either case,
investigated by a simple theoretical model introduced previously, we obtainR, which corresponds the mesh structures at one
where the diffusion coefficientD,, of the probe molecules concentration of hyaluronan solution. By repeating the same
outside the sphere of radigrom its initial position is different procedure for various concentration of hyaluronan solution, we
from that inside the spher®,. Two approximate expressions can study howR changes by changing the concentratiéh.
are obtained for the normalized fluorescence fluctuation cor- should also depend on the molecular size of the solute.
relation function. Both of them reproduce the exact numerical Meanwhile, the mean mesh size of the gel can be estimated
results accurately for experimentally accessible valueBpf  from the cross-section of the chain molecule and the concentra-
andD.. One of the expressions, eq 19, is specific to the quantity tion of hyaluronan if a cubic structure is assumed or from the
observable by fluorescence correlation spectroscopy. The othemeasurement by an electron spin reson&héiswould be very
expression, eq 20, is presented in terms of a time-dependeninteresting to know how these two lengths are related. The
diffusion coefficient, eq 21. The introduction of a time- diffusion of a particle in hyaluronan solution has been also
dependent diffusion coefficient seems to be useful for analyzing investigated by simulatior?S. It is revealed that a change in
other phenomena involving diffusion. Moreover, as we have the diffusion coefficients is extremely difficult to observe within
shown in the preceding section, the time-dependent diffusion the system size of gels accessible by simulatiéihe physical
coefficient has a clear physical meaning as the statistical averagenechanism behind hindered diffusion has not yet been clearly
of slow and fast diffusion coefficients. understood. Recently, Alexandrakis et al. studied the effect of

The normalized autocorrelation function, eq 5, has been hyaluronidase treatment on diffusion by a multicomponent fluids
widely used in fluorescence correlation spectroscopy for ho- model*® Our theory is based on an alternative picture of
mogeneous solutions. There are various sources of heterogeneitgtructured fluids and focused on hindered diffusion. The time
in biological samples. Only a few analytical expressions of the dependence of the diffusion coefficient, eq 21, can be used to
normalized autocorrelation function have been applied in test the validity of this picture.

VI. Conclusion
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